The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis

نویسندگان

  • Kiyoung Jang
  • Hong Gil Lee
  • Su-Jin Jung
  • Nam-Chon Paek
  • Pil Joon Seo
چکیده

Floral transition is influenced by environmental factors such as light and temperature. Plants are capable of integrating photoperiod and ambient temperature signaling into their developmental program. Despite extensive investigations on individual genetic pathways, little is known about the molecular components that integrate both pathways. Here, we demonstrate that the RING finger-containing E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) acts as an integrator of photoperiod and ambient temperature signaling. In addition to the role in photoperiodic destabilization of CONSTANS (CO), COP1 also regulates temperature sensitivity by controlling the degradation of GIGANTEA (GI). COP1-impaired mutants showed reduced sensitivity to low ambient temperature. Notably, COP1 is more stabilized at low temperature and accelerates GI turnover in a 26S proteasome-dependent manner. The direct association of GI with the promoter of FLOWERING LOCUS T (FT) was reduced because of its ambient temperature-dependent protein stability control, and thus COP1-triggered GI turnover delays flowering at low temperatures via a CO-independent pathway. Taken together, our findings indicate that environmental conditions regulate the stability of COP1, and conditional specificity of its target selection stimulates proper developmental responses and ensures reproductive success.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The RING-Finger E3 Ubiquitin Ligase COP1 SUPPRESSOR1 Negatively Regulates COP1 Abundance in Maintaining COP1 Homeostasis in Dark-Grown Arabidopsis Seedlings.

CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) functions as an E3 ubiquitin ligase in both plants and animals. In dark-grown Arabidopsis thaliana seedlings, COP1 targets photomorphogenesis-promoting factors for degradation to repress photomorphogenesis. Little is known, however, about how COP1 itself is regulated. Here, we identify COP1 SUPPRESSOR1 (CSU1), a RING-finger E3 ubiquitin ligase, as a regulat...

متن کامل

COP1-mediated ubiquitination of CONSTANS is implicated in cryptochrome regulation of flowering in Arabidopsis.

In Arabidopsis thaliana, the blue light photoreceptor cryptochromes (CRY) act to promote photomorphogenic development and the transition from vegetative to floral development in long days (LDs). We previously proposed that one of the mechanisms by which CRY regulates light responses is via its physical interaction with COP1, a RING motif-containing E3 ligase. Under LDs, the transcription of FLO...

متن کامل

The E3 ubiquitin ligase HOS1 regulates Arabidopsis flowering by mediating CONSTANS degradation under cold stress.

The timing of flowering is coordinated by a web of gene regulatory networks that integrates developmental and environmental cues in plants. Light and temperature are two major environmental determinants that regulate flowering time. Although prolonged treatment with low nonfreezing temperatures accelerates flowering by stable repression of FLOWERING LOCUS C (FLC), repeated brief cold treatments...

متن کامل

COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability.

Seasonal changes in day length are perceived by plant photoreceptors and transmitted to the circadian clock to modulate developmental responses such as flowering time. Blue-light-sensing cryptochromes, the E3 ubiquitin-ligase COP1, and clock-associated proteins ELF3 and GI regulate this process, although the regulatory link between them is unclear. Here we present data showing that COP1 acts wi...

متن کامل

Phosphorylation of CONSTANS and its COP1-dependent degradation during photoperiodic flowering of Arabidopsis.

Seasonal flowering involves responses to changes in day length. In Arabidopsis thaliana, the CONSTANS (CO) transcription factor promotes flowering in the long days of spring and summer. Late flowering in short days is due to instability of CO, which is efficiently ubiquitinated in the dark by the CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase complex. Here we show that CO is also phosphorylat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015